Using Surrogate Models to Accelerate Bayesian Inverse Uncertainty Quantification

James Rynn

SIAM Student Chapter Conference 2017

james.rynn@manchester.ac.uk

05/05/17

Overview

Bayesian Inverse Problems

2 Motivating Example

Bayesian Inverse Problems

Find the unknown θ given $n_{\rm obs}$ observations **D**, satisfying

$$\mathbf{D} = \mathcal{G}(\theta) + \boldsymbol{\eta}, \quad \boldsymbol{\eta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}),$$

where

- $\mathbf{D} \in \mathbb{R}^{n_{\text{obs}}}$ is a given vector of **observations**,
- $\mathcal{G}: \mathcal{X} \to \mathbb{R}^{n_{\text{obs}}}$ is the observation operator,
- $\theta \in \mathcal{X}$ is the **unknown**,
- $\eta \in \mathbb{R}^{n_{\mathrm{obs}}}$ is a vector of **observational noise**.

We treat this as a probabilistic problem and search for a posterior distribution for θ .

Bayesian Inverse Problems

In the finite-dimensional case, from Bayes' Theorem we have

$$egin{aligned} \pi(heta|\mathbf{\mathsf{D}}) \propto \mathcal{L}(\mathbf{\mathsf{D}}| heta) \; \pi_0(heta) \ \propto \exp\left(-rac{1}{2}\|\mathbf{\mathsf{D}}-\mathcal{G}(heta)\|_{\Sigma}^2
ight) \; \pi_0(heta), \end{aligned}$$

Markov Chain Monte Carlo (MCMC) Methods

- We know $\pi(\theta|\mathbf{D})$ up to a constant of proportionality,
- Use MCMC algorithm to generates samples $\theta_1, \theta_2, \dots, \theta_N$ from the posterior distribution,
- Use these samples to construct Monte Carlo estimates of quantities of interest (means, variances and/or probabilities),
- e.g.,

$$\mathbb{E}_{\pi}[\phi(\Theta)] = \int_{\mathcal{X}} \phi(s) \pi(s|\mathbf{D}) \mathsf{d}s pprox rac{1}{N} \sum_{i=1}^{N} \phi(heta_i).$$

Motivation

James Rynn

Motivation

Motivation

Unknowns:

- λ thermal conductivity,
- *I* laser intensity,
- k boundary condition parameter,
- σ standard deviation of measurement noise.

Example

Consider the one-dimensional steady state heat equation,

$$-rac{\mathrm{d}}{\mathrm{d}x}\left(\lambdarac{\mathrm{d}u}{\mathrm{d}x}(x)
ight)=f(x),\quad x\in[0,H],$$

with homogeneous Dirichlet boundary conditions,

$$u(0)=u(H)=0.$$

where $\lambda = e^{\theta}$ is the unknown thermal conductivity.

We wish to find a posterior distribution for λ (equivalently θ), given observations of u(x) at $x_1, x_2, \ldots, x_{n_{obs}} \in [0, H]$.

Example

Here, our observation operator $\boldsymbol{\mathcal{G}}$ is of the form

$$\mathcal{G}(\boldsymbol{\theta}) = (u(x_1; \boldsymbol{\theta}), u(x_2; \boldsymbol{\theta}), \dots, u(x_{n_{obs}}; \boldsymbol{\theta}))^{\mathsf{T}},$$

and approximated by \mathcal{G}_h given by

$$\mathcal{G}_h(\theta) = (u_h(x_1; \theta), u_h(x_2; \theta), \dots, u_h(x_{n_{obs}}; \theta))^T,$$

where u_h is the finite element solution to the ODE on a mesh of width h.

Note: For each value of θ , to evaluate \mathcal{G}_h we are required to compute a FEM solve.

Random Walk Metropolis Hastings Algorithm (FEM)

Algorithm 1: RWMH Algorithm

set initial state
$$X^{(0)} = \theta_0$$

for
$$m = 1, 2, ..., N$$
 do

draw proposal

evaluate likelihood by computing \mathcal{G}_h (expensive!)

compute acceptance probability α

accept proposal with probability α

output chain $X = (\theta_0, \theta_1, \dots, \theta_N)$

Here $N \gg 10^5$.

Results

Stochastic Galerkin Finite Element Method

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and consider the problem

$$-\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{\theta(\omega)}\frac{\mathrm{d}u}{\mathrm{d}x}(x,\omega)\right)=f(x),\quad x\in[0,H],\quad\omega\in\Omega,$$

with homogeneous Dirichlet boundary conditions,

$$u(0,\omega) = u(H,\omega) = 0, \quad \omega \in \Omega.$$

Assuming θ is of the form

 $\theta(\omega) = \theta(\xi(\omega)),$

we can transform this into a parametric equation on $[0, H] \times \xi(\Omega)$.

Stochastic Galerkin Finite Element Method

Parametric form:

$$-\frac{\mathsf{d}}{\mathsf{d}x}\left(e^{\theta(\mathbf{y})}\frac{\mathsf{d}u}{\mathsf{d}x}(x,\mathbf{y})\right)=f(x), \quad x\in[0,H], \quad \mathbf{y}\in\Gamma:=\xi(\Omega),$$

with homogeneous Dirichlet boundary conditions,

$$u(0, \mathbf{y}) = u(H, \mathbf{y}) = 0, \quad \mathbf{y} \in \mathbf{\Gamma}.$$

Construct a stochastic Galerkin FEM solution u_{hP} on a finite dimensional subspace of $L^2(\Gamma, \mathcal{H}^1_0(D))$ of size $(P+1) \times \frac{1}{h}$.

Random Walk Metropolis Hastings Algorithm Algorithm (SGFEM)

Algorithm 2: RWMH Algorithm with SGFEM Surrogate

compute SGFEM solution u_{hP} set initial state $X^{(0)} = \theta_0$ for m = 1, 2, ..., N do draw proposal evaluate likelihood by evaluating \mathcal{G}_{hP} (cheap!) compute acceptance probability α accept proposal with probability α output chain $X = (\theta_0, \theta_1, ..., \theta_N)$

Here $N \gg 10^5$.

Posterior Convergence in N (Number of Samples)

Posterior Convergence in P (Polynomial Degree)

Time vs Error

Future Work

- More realistic forward problem:
 - time-dependent PDE,
 - second spatial dimension,
 - multiple random variables,
- Error analysis,
- More sophisticated MCMC algorithm.

References

- I. BABUŠKA, R. TEMPONE, AND G. ZOURARIS, Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations, SIAM Journal on Numerical Analysis, 42 (2004), pp. 800–825.
- S. BROOKS, A. GELMAN, G. JONES, AND X.-L. MENG, Handbook of Markov Chain Monte Carlo, Chapman and Hall/CRC, 2011.
- A. STUART, *Inverse Problems: A Bayesian Perspective*, Acta Numer., 19 (2010), pp. 451–559.
- L. WRIGHT, L. CHAPMAN, AND D. PARTRIDGE, Laser Flash Experiment on Layered Materials: Parameter Estimation and Uncertainty Evaluation. National Physical Laboratory (NPL), Internal Communication.

