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Bayesian Inverse Problems

Find the unknown θ given nobs observations D, satisfying

D = G(θ) + η, η ∼ N (0,Σ),

where

D ∈ Rnobs is a given vector of observations,

G : X → Rnobs is the observation operator,

θ ∈ X is the unknown,

η ∈ Rnobs is a vector of observational noise.

We treat this as a probabilistic problem and search for a posterior
distribution for θ.
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Bayesian Inverse Problems

In the finite-dimensional case, from Bayes’ Theorem we have

π(θ|D) ∝ L(D|θ) π0(θ)

∝ exp

(
−1

2
‖D− G(θ)‖2

Σ

)
π0(θ),
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Markov Chain Monte Carlo (MCMC) Methods

We know π(θ|D) up to a constant of proportionality,

Use MCMC algorithm to generates samples θ1, θ2, . . . , θN from
the posterior distribution,

Use these samples to construct Monte Carlo estimates of
quantities of interest (means, variances and/or probabilities),

e.g.,

Eπ[φ(Θ)] =

∫
X
φ(s)π(s|D)ds ≈ 1

N

N∑
i=1

φ(θi ).
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Motivation

Unknowns:

λ — thermal conductivity,

I — laser intensity,

k — boundary condition parameter,

σ — standard deviation of measurement noise.
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Example

Consider the one-dimensional steady state heat equation,

− d

dx

(
λ

du

dx
(x)

)
= f (x), x ∈ [0,H],

with homogeneous Dirichlet boundary conditions,

u(0) = u(H) = 0.

where λ = eθ is the unknown thermal conductivity.

We wish to find a posterior distribution for λ (equivalently θ), given
observations of u(x) at x1, x2, . . . , xnobs

∈ [0,H].
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Example

Here, our observation operator G is of the form

G(θ) = (u(x1; θ), u(x2; θ), . . . , u(xnobs
; θ))T ,

and approximated by Gh given by

Gh(θ) = (uh(x1; θ), uh(x2; θ), . . . , uh(xnobs
; θ))T ,

where uh is the finite element solution to the ODE on a mesh of
width h.

Note: For each value of θ, to evaluate Gh we are required to
compute a FEM solve.
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Random Walk Metropolis Hastings Algorithm (FEM)

Algorithm 1: RWMH Algorithm

set initial state X (0) = θ0

for m = 1, 2, . . . ,N do
draw proposal
evaluate likelihood by computing Gh (expensive!)
compute acceptance probability α
accept proposal with probability α

output chain X = (θ0, θ1, . . . , θN)

Here N � 105.
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Results
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Stochastic Galerkin Finite Element Method

Let (Ω,F ,P) be a probability space and consider the problem

− d

dx

(
eθ(ω) du

dx
(x , ω)

)
= f (x), x ∈ [0,H], ω ∈ Ω,

with homogeneous Dirichlet boundary conditions,

u(0, ω) = u(H, ω) = 0, ω ∈ Ω.

Assuming θ is of the form

θ(ω) = θ(ξ(ω)),

we can transform this into a parametric equation on [0,H]× ξ(Ω).
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Stochastic Galerkin Finite Element Method

Parametric form:

− d

dx

(
eθ(y) du

dx
(x , y)

)
= f (x), x ∈ [0,H], y ∈ Γ := ξ(Ω),

with homogeneous Dirichlet boundary conditions,

u(0, y) = u(H, y) = 0, y ∈ Γ.

Construct a stochastic Galerkin FEM solution uhP on a finite
dimensional subspace of L2(Γ,H1

0(D)) of size (P + 1)× 1
h .
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Random Walk Metropolis Hastings Algorithm Algorithm
(SGFEM)

Algorithm 2: RWMH Algorithm with SGFEM Surrogate

compute SGFEM solution uhP

set initial state X (0) = θ0

for m = 1, 2, . . . ,N do
draw proposal
evaluate likelihood by evaluating GhP (cheap!)
compute acceptance probability α
accept proposal with probability α

output chain X = (θ0, θ1, . . . , θN)

Here N � 105.
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Posterior Convergence in N (Number of Samples)
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Posterior Convergence in P (Polynomial Degree)
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Time vs Error
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Future Work

More realistic forward problem:

time-dependent PDE,
second spatial dimension,
multiple random variables,

Error analysis,

More sophisticated MCMC algorithm.
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