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Background

Definition
Let (Ω,F ,P) be a probability space. A discrete-time
stochastic process is a set of random variables
{Xk ∈ R | k ∈ N0}.
We often simplify this to Xk but it is important not to forget
the underlying probability space, i.e., that in truth
Xk = Xk(ω) for all ω ∈ Ω, k ∈ N0.
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Background

Definition
Let (Ω,F ,P) be a probability space. A stochastic process
X = (Xk)k∈N0 with values in a set S is a (discrete time)
Markov chain, if it satisfies the Markov (or ‘memoryless’)
property:

P(Xk ∈ Ak | Xk−1 ∈ Ak−1, . . . ,X0 ∈ A0)

= P(Xk ∈ Ak | Xk−1 ∈ Ak−1),

for all A0,A1, . . . ,Ak ⊆ S and all k ∈ N.
That is, if the distribution of Xk depends on X0,X1, . . . ,Xk−1

only through Xk−1. The set S is called the state space of X
(with Xk , k ∈ N0 the state at time k ), the distribution of X0

is called the initial distribution of X and we interpret the
index k as time.
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Background

Definition
A transition density is a map ν : R× R→ R such that:
a) ν(x , y) ≥ 0 ∀ x , y ∈ R; and
b)
∫
R ν(x , y)dy = 1 ∀ x ∈ R.

Definition
A probability density π : R→ [0,∞) is a stationary density
for a Markov chain on the state space S ⊆ R with transition
density ν, if it satisfies∫

S
π(x)ν(x , y)dx = π(y),

for all y ∈ R.
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Aims

We wish to investigate models involving uncertainty, e.g.,
PDEs with uncertain data.

We do this by finding probability distributions for the
uncertain parameters, given (indirect) observations of the
data.

This allows us to quantify uncertainty.
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Method

We will sample from the posterior distribution of the
parameters given the observations.

Ideally we would like to generate i.i.d. samples from this
distribution - but this is difficult - not least because we don’t
actually know the distribution!

We instead choose to generate the next best thing - Markov
chains.

This is the main idea behind Markov chain Monte Carlo
(MCMC) methods.

We treat the states of the Markov chain as samples from
the posterior distribution and use these to build a picture of
the distribution.
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Metropolis–Hastings Algorithm

This algorithm is used to produce a Markov chain with
stationary density, π, that of the distribution we wish to
sample from.
Main Idea:

1 assume the current state is Xk−1 = x ,
2 generate proposed value for the next state of the chain,

Yk = y (in a clever way)
3 compute the acceptance probability,

α(x , y) := min
(
π(y)ν(y , x)
π(x)ν(x , y)

,1
)
,

4 accept the proposed value with probability α, or reject
and stay at the current state,

5 repeat until enough states (samples) have been
generated.
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Metropolis–Hastings Algorithm

Metropolis–Hastings Algorithm:
1: Set initial state X0

2: for k = 1,2,3, . . . ,N
3: generate Yk with density ν(Xk−1, ·)
4: generate Uk ∼ U [0,1]
5: if Uk ≤ α(Xk−1,Yk)
6: Xk ← Yk

7: else
8: Xk ← Xk−1

9: end if
10: output Xk

11: end for

Key Observation: We only need to know π up to a
constant of proportionality!
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Acceptance Probability

Why choose α(x , y) = min
(
π(y)ν(y ,x)
π(x)ν(x ,y) ,1

)
?

We want α to represent a probability, so it must be bounded
above by 1.

It can be shown that this choice of α results in a chain with
stationary density π.
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Random Walk Metropolis–Hastings Algorithm

This is a specific case of the Metropolis–Hastings
algorithm, where the proposals Yk are constructed as

Yk = Xk−1 + εk ,

where the εk are chosen to be i.i.d. with a symmetric
distribution.

We will use
εk ∼ N (0, β2),

so Yk ∼ N (Xk−1, β
2)

The choice of proposal variance β2 is very important, the
optimal value is problem dependent.
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Random Walk Metropolis–Hastings Algorithm

Random Walk Metropolis–Hastings Algorithm:
1: Set initial state X0

2: for k = 1,2,3, . . . ,N
3: generate εk

4: let Yk ← Xk−1 + εk

5: generate Uk ∼ U [0,1]
6: if Uk ≤ α(Xk−1,Yk)
7: Xk ← Yk

8: else
9: Xk ← Xk−1

10: end if
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Biased Coin Example

We have a (possibly biased) coin and wish to determine the
probability of throwing a “head”, i.e., find

p := P({H}).

We toss the coin 10 times and observed the event

A = {H, H, T, H, H, H, H, T, T, H} ,
(

7H, 3T
)
.

We aim to characterize the posterior probability distribution,
P(p|A).
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Prior Beliefs

Informally:

p ∼ N

(
1
2
,

(
1

10

)2
)∣∣∣∣

[0,1]
.

Formally: Let p be a random variable with (Lebesgue)
density ρ0(p) (the prior ), given by

ρ0(p) = c · 1
1

10

√
2π

exp

(
−(p − 1

2)
2

2( 1
10)

2

)
1[0,1](p),

where c is a constant ensuring that ρ0(p) is a pdf.
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Likelihood

The likelihood, denoted ρ(A|p), is the density of the
random variable A|p.

#H’s ∼ Binomial(10,p).

Hence,

ρ(A|p) =
(

10
7

)
p7(1− p)3 = 120 p7(1− p)3.
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Bayes’ Theorem

Theorem
(Bayes’ Theorem)
Assume that

Z :=

∫
R
ρ(A|p)ρ0(p)dp > 0.

Then, p|A is a random variable with (Lebesgue) density
π(p|A) given by

π(p|A) = 1
Z
ρ(A|p)ρ0(p).

π(p|A) is called the posterior density
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Bayes Theorem

Key Observation:

π(p|A) ∝ ρ(A|p)ρ0(p)

In our example:

π(p|A) ∝ ρ(A|p)ρ0(p)

= 120 p7(1− p)3 · 10c√
2π

exp

(
−50

(
p − 1

2

)2
)
1[0,1](p)

=
1200c√

2π
p7(1− p)3 exp

(
−50

(
p − 1

2

)2
)
1[0,1](p),
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Analytic Posterior

In this simple example, we can show

π(p|A) = C̃p7(1− p)3 exp

(
−50

(
p − 1

2

)2
)
1[0,1](p),

where

C̃ :=

[
65023

625000000

√
2π erf

(
5√
2

)
+

2577
62500000

e−
25
2

]−1

,

and

erf(z) :=
2
π

∫ z

0
e−t2

dt .
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Experiment 1: Varying the Proposal
Variance, β2

β too small
=⇒ high proportion of proposals accepted,
=⇒ slow movement due to small jump size.

β too large
=⇒ low proportion of proposals accepted,
=⇒ slow movement due to long time between jumps.

The optimal value of β lies between these two extremes.
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Experiment 1: Varying the Proposal
Variance, β2
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Experiment 2: Varying Sample Size, N

Plotting a normalised histogram of the states of the Markov
chain output by the algorithm gives an approximation to the
true posterior density π.

But how many samples do we need for a sufficient
approximation?
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Experiment 2: Varying Sample Size, N
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Extracting Results

What does a converged plot tell us?
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Error Analysis
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Experiment 3: Increasing the Number of
Observations

Suppose we have more observations, what effect does this
have on the resulting posterior?

More observations = more data = more knowledge.

The posterior will reflect this.
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Experiment 3: Increasing the Number of
Observations
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Questions

Thank you for listening.
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Experiment 4: Varying the Prior
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Experiment 4: Varying the Prior
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