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Motivation
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Unknowns:

@ )\ — thermal conductivity,
@ |/ — laser intensity,
@ k — boundary condition parameter,

@ 0 — measurement noise,
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Distributions

What is a distribution?

It describes the probability of an event occurring/random
variable taking a certain value.

We write X ~ D to denote that the random variable X
follows the distribution D and

P(XGA) :/ 1{X€A}fx(X)dX:/fx(X)dX,
X A
to denote the probability of the event A occurring.

Here fx(x) is the probability density function of the random
variable X, which uniquely determines the distribution of X.
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Distributions

Some common distributions are:
@ Uniform Distribution

X ~U(a,b), fe(x) =

Probability Density
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Distributions

Some common distributions are:
@ Normal Distribution

X NN(M702)7 fX(X) =—86 22

Probability Density
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Distributions

Some common distributions are:
@ Gamma Distribution

X ~ Gamma(a, 3), fx(x) = %x““e‘ﬁx.

Gamma Distribution
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Monte Carlo Sampling

We often want to compute quantities of interest about the
random variable X, for example

E[X] = / xfx(x)dx,
Var(X) — /X (X — p)2he(x)dx.
P(X > a) = / 1{X>a}fx(X)dX.

What if this integral is intractable? We need to somehow
approximate it.

Q: Can we use standard quadrature approaches?

A: No..., such routines are far too expensive in high
dimensions!
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Monte Carlo Sampling

The answer is to use the method of Monte Carlo sampling.
Simply put, to do this we sample from the given distribution
of X and approximate the integral as a sum.

For example, to estimate the expectation E[X], using

samples xi, X2, . .., Xy drawn from the distribution of X we
use the approximation

BIX] = | xix(x Z 3

and for a general function ¢: X — R,

| ot ~ N 2000
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Monte Carlo Sampling

Q: Why is this better?

A1: Does not suffer from the ‘curse of dimensionality’!

A2: We can always perform this form of estimate whenever
we can sample from the distribution of X and evaluate the

function ¢.

The error in this technique is O(N~z).
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Monte Carlo Sampling

Q: What if the distribution of X is difficult/impossible to
generate from directly? What if the distribution of X is only
known up to a constant of proportionality?

A: We then require the use of Markov chain Monte Carlo
(MCMC) methods.

First, we revisit, the key properties of a Markov chain. . .
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Markov Chains

A stochastic process X = (Xx)«en is a discrete—time Markov
chain if it satisfies the ‘memoryless property’:

P(Xkt1 = X1 | X = X, ..., X4 = Xq)
= P(XK.H = Xk+41 | Xk = Xk).

A Markov chains movement through state space X' is
described by a transition density v, which satisfies

v(ix,y) >0 Vx,yek,
/u(x,y)dy:1 VxeX.
X

Under certain (technical) conditions, a Markov chain has a
stationary distribution, =, satisfying

/Xw(x)z/(x, y)dx=n(y) VyedX.
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Markov Chain Monte Carlo

Suppose we wish to draw samples (X )«en from a given
distribution X with density .

It can often be difficult to produce samples from a
prescribed distribution, or we may only know the density 7
up to a constant of proportionality.

The next best thing to independent identically distributed
(.i.d.) samples are the states of a Markov chain, which
have low correlation due to the memoryless property.

Key Idea: Producing a Markov chain with stationary density

equal to 7 is equivalent to generating samples from a
distribution with density .

NA T T



Markov Chain Monte Carlo

Markov chain Monte Carlo algorithms can be summed up
as:

@ generate proposals using the current state in a clever
(efficient) way,

@ accept the proposal as the next state or reject the
proposal and remain at the current state in a clever
way,

@ repeat to produce the desired number of samples by
taking these as the states of the chain once it has
reached stationarity.

NA T



Markov Chain Monte Carlo

Now for an example in MATLAB. . .
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Bayesian Inverse Problems

Find the unknown @ given n,,. observations D, satisfying
D=gG(0)+n, n~N(0,2)

where
@ D € R™®s js a given vector of observations,
@ G: R — R™s is the observation operator,
@ 0 is the unknown,
@ n € R™»s is a vector of observational noise.

We treat this as a probabilistic problem and search for a
posterior distribution for 6.
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Bayesian Inverse Problems

Crucially, we have

(6]1D) o< L(D[6)mo(6),

so we can sample from the posterior (6| D) using our
favourite MCMC method!
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PDE Example

Consider the transient heat equation with source term,

ou 02u
a—t(x, t) = Aa 2(x H)+ Q(x,t), xel0,H] te]0,T],

with boundary conditions

ou ou
K00 =a(D), —(H.)=alt), Yte[0,T]

where )\ is the unknown thermal conductivity.

We now want to find a posterior distribution for A, given
observations of u(H, t) at discrete time points.
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PDE Example

Plot of the Approximate Posterior for A
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PDE Example
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PDE Example
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