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Motivation
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Motivation

Unknowns:

λ — thermal conductivity,

I — laser intensity,

k — boundary condition parameter,

σ — measurement noise,
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Distributions

What is a distribution?

It describes the probability of an event occurring/random
variable taking a certain value.

We write X ∼ D to denote that the random variable X
follows the distribution D and

P(X ∈ A) =
∫
X

1{x∈A}fX (x)dx =

∫
A

fX (x)dx ,

to denote the probability of the event A occurring.

Here fX (x) is the probability density function of the random
variable X , which uniquely determines the distribution of X .
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Distributions

Some common distributions are:
Uniform Distribution

X ∼ U(a,b), fX (x) =
1

b − a
.
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Distributions

Some common distributions are:
Normal Distribution

X ∼ N (µ, σ2), fX (x) =
1√
2π

e−
(x−µ)2

2σ2 .
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Distributions

Some common distributions are:
Gamma Distribution

X ∼ Gamma(α, β), fX (x) =
βα

Γ (α)
xα−1e−βx .
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Monte Carlo Sampling

We often want to compute quantities of interest about the
random variable X , for example

E[X ] =

∫
X

xfX (x)dx ,

Var(X ) =

∫
X
(x − µ)2fX (x)dx ,

P(X > a) =
∫
X

1{x>a}fX (x)dx .

What if this integral is intractable? We need to somehow
approximate it.
Q: Can we use standard quadrature approaches?
A: No. . . , such routines are far too expensive in high
dimensions!
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Monte Carlo Sampling

The answer is to use the method of Monte Carlo sampling.
Simply put, to do this we sample from the given distribution
of X and approximate the integral as a sum.

For example, to estimate the expectation E[X ], using
samples x1, x2, . . . , xN drawn from the distribution of X we
use the approximation

E[X ] =

∫
X

xfX (x)dx ≈ 1
N

N∑
i=1

xi ,

and for a general function φ : X → R,∫
X
φ(x)fX (x)dx ≈ 1

N

N∑
i=1

φ(xi).
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Monte Carlo Sampling

Q: Why is this better?

A1: Does not suffer from the ‘curse of dimensionality’!

A2: We can always perform this form of estimate whenever
we can sample from the distribution of X and evaluate the
function φ.

The error in this technique is O(N− 1
2 ).
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Monte Carlo Sampling

Q: What if the distribution of X is difficult/impossible to
generate from directly? What if the distribution of X is only
known up to a constant of proportionality?

A: We then require the use of Markov chain Monte Carlo
(MCMC) methods.

First, we revisit, the key properties of a Markov chain. . .
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Markov Chains

A stochastic process X = (Xk)k∈N is a discrete–time Markov
chain if it satisfies the ‘memoryless property’:

P(Xk+1 = xk+1 | Xk = xk , . . . ,X1 = x1)

= P(Xk+1 = xk+1 | Xk = xk).

A Markov chains movement through state space X is
described by a transition density ν, which satisfies

ν(x , y) ≥ 0 ∀ x , y ∈ X ,∫
X
ν(x , y) dy = 1 ∀ x ∈ X .

Under certain (technical) conditions, a Markov chain has a
stationary distribution, π, satisfying∫

X
π(x)ν(x , y) dx = π(y) ∀ y ∈ X .
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Markov Chain Monte Carlo

Suppose we wish to draw samples (Xk)k∈N from a given
distribution X with density π.
It can often be difficult to produce samples from a
prescribed distribution, or we may only know the density π
up to a constant of proportionality.

The next best thing to independent identically distributed
(i.i.d.) samples are the states of a Markov chain, which
have low correlation due to the memoryless property.

Key Idea: Producing a Markov chain with stationary density
equal to π is equivalent to generating samples from a
distribution with density π.
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Markov Chain Monte Carlo

Markov chain Monte Carlo algorithms can be summed up
as:

generate proposals using the current state in a clever
(efficient) way,

accept the proposal as the next state or reject the
proposal and remain at the current state in a clever
way,

repeat to produce the desired number of samples by
taking these as the states of the chain once it has
reached stationarity.
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Markov Chain Monte Carlo

Now for an example in MATLAB. . .
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Bayesian Inverse Problems

Find the unknown θ given nobs observations D, satisfying

D = G(θ) + η, η ∼ N (0, Σ)

where
D ∈ Rnobs is a given vector of observations,
G : R→ Rnobs is the observation operator,
θ is the unknown,
η ∈ Rnobs is a vector of observational noise.

We treat this as a probabilistic problem and search for a
posterior distribution for θ.
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Bayesian Inverse Problems

Crucially, we have

π(θ|D) ∝ L(D|θ)π0(θ),

so we can sample from the posterior π(θ|D) using our
favourite MCMC method!
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PDE Example

Consider the transient heat equation with source term,

∂u
∂t

(x , t) = λ
∂2u
∂x2 (x , t) + Q(x , t), x ∈ [0,H], t ∈ [0,T ],

with boundary conditions

∂u
∂x

(0, t) = g1(t),
∂u
∂x

(H, t) = g2(t), ∀ t ∈ [0,T ].

where λ is the unknown thermal conductivity.

We now want to find a posterior distribution for λ, given
observations of u(H, t) at discrete time points.
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PDE Example
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PDE Example
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PDE Example
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