
QUANTIFYING UNCERTAINTY IN THE LASER FLASH EXPERIMENT

SIMON COTTER, CATHERINE POWELL, JAMES RYNN, LOUISE WRIGHT

THE LASER FLASH EXPERIMENT
The laser flash experiment is used to determine the thermal
conductivity of a material. A sample of the material is placed
in a furnace and hit with a laser pulse. The temperature at
the other end of the material is then measured at certain time
points using an IR sensor.

For a full description see [1], for example.

UNCERTAINTY QUANTIFICATION

In inverse uncertainty quantification, our aim is to recover a
probability distribution for unknowns in a system’s model
using noisy readings of the system at some points in space
and time.

We suppose our data is of the form

y = G(θ) + η, η ∼ N (0,Σ), (1)

where θ is the true value of the unknown we are trying
to build a probability distribution for, G is the so-called
observation operator (which maps values of the unknown into
data) and η is observational noise. Here we assume the noise
is Gaussian with mean zero and covariance matrix Σ.

We use a simple one-dimensional model with time depen-
dence to model the temperature of the sample at the point
x and time t, denoted u(x, t). In this case, the data points y
are temperature measurements at the end of the sample at the
measurement times and the observation operator G gives the
solution of the transient heat equation
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∂x2
(x, t) +Q(x, t) (2)

at these points for given values of the parameters λ (ther-
mal conductivity), I (laser intensity) and k (convection coeffi-
cient). We are interested in finding the thermal conductivity
of the material and so we must somehow invert (1) whilst fil-
tering out the noise.

THE BAYESIAN APPROACH
In the 18th century, Bayes and Laplace formulated what we
call Bayes’ rule,

P(θ|y)P(y) = P(y|θ)P(θ).

This simple formula allows us to combine our prior knowl-
edge about an unknown, θ, along with data, y, to produce an
informed probability distribution for θ given y.

This probability distribution is called the posterior and we use
Bayes’ rule to define it as

P(θ|y) ∝ P(y|θ)P(θ), (3)

where the likelihood function, P(y|θ), follows from (1),

P(y|θ) = N (G(θ)− y,Σ). (4)

MARKOV CHAIN MONTE CARLO
Markov chain Monte Carlo (MCMC) methods are a flexible
class of statistical algorithms which can be used to explore
probability distributions.

These algorithms allow us to generate samples from a distri-
bution where the probability density function is known only
up to a constant of proportionality. Notice that this is exactly
the situation described in (3).

Samples are generated by producing a Markov chain
X =

(
X(0), X(1), . . . , X(M)

)
with stationary density equal to

the desired (posterior) density, π.

The Metropolis-Hastings (MH) Algorithm, originally defined
in the 1970s is as follows:

Table 1: The Metropolis–Hastings Algorithm.

1 set X(0) = X0 (initial state)

2 for m = 1, 2, . . . ,M do

3 draw Y ∼ q(X(m−1), ·) (sample from proposal
distribution, dependent on current state)

4 set α(X(m−1), Y ) = min
{

1, π(Y )
π(X(m−1))

q(X(m−1),Y )
q(Y,X(m−1))

}
(compute acceptance probability)

5 draw U ∼ U [0, 1]

6 if U ≤ α(X(m−1), Y ) then

7 set X(m) = Y (accept proposal)
8 else

9 set X(m) = X(m−1) (reject proposal)

10 output X =
(
X(0), X(1), . . . , X(M)

)
(output Markov

chain)

THE FORWARD PROBLEM
To generate samples using an MCMC algorithm such as the
(Random Walk) Metropolis–Hastings algorithm, we must be
able to evaluate the forward operator, G. This is referred to as
the forward problem.

We use the Crank-Nicolson (CN) implicit finite difference
method to approximate the solution of (2) on a uniform
space–time mesh, introducing approximation error into our
solution. However, the CN method can be shown to be
second order in both space and time as well as consistent
[2], meaning that the resulting approximation converges to
the true solution as the mesh is refined. Furthermore, it can
be shown that, under certain conditions, the approximation
error in our approximate posterior reduces similarly under
refinement [3].

Below is a plot of the temperature of a sample of braze at the
end point at the measurement times, produced using the CN
method. Also plotted (in blue) is some experimental data. Op-
timisation was used to find the values of the unknown pa-
rameters λ, I and k which allowed the CN approximation to
match the true data best in the least squares sense. These op-
timised values for the unknown parameters give a good start-
ing value X(0) for our MCMC routine, as we expect them to
lie in a region of high probability density.
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RESULTS
Firstly, we examine how the posterior mean of an MCMC
sample is affected by the level of mesh refinement. This is im-
portant because the more refined the mesh, the more costly
each MCMC sample is to produce. Therefore, finding the
coarsest mesh such that the approximation error is negligi-
ble is computationally beneficial. The plot below shows how
the posterior mean of the thermal conductivity λ varies as the
temporal mesh is refined.
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Secondly, normalised histograms of the states visited by a
(long) Markov chain are plotted to give an approximation to
the posterior density. An approximation of the posterior den-
sity for the thermal conductivity λ given the data is plotted
below, along with the corresponding prior density.
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We can see from the above plot that by incorporating the data
into our estimate for the parameter we have reduced the vari-
ance compared to the prior and thus the uncertainty regarding
the value of that parameter.

FUTURE WORK
In order to approximate the posterior well, we must gener-
ate a large number M of samples. Reducing the time taken
to generate these samples therefore is a key issue. Two possi-
ble candidates for reducing the cost of the forward solve are
reduced basis or surrogate models.


